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In this paper, an entropy-consistent flux is developed, continuing from the work of the pre-
vious paper. To achieve entropy consistency, a second and third-order differential terms
are added to the entropy-conservative flux. This new flux function is tested on several
one dimensional problems and compared with the original Roe flux. The new flux function
exactly preserves the stationary contact discontinuity and does not capture the unphysical
rarefaction shock. For steady shock problems, the new flux predicts a slightly more diffused
profile whereas for unsteady cases, the captured shock is very similar to those produced by
the Roe- flux. The shock stability is also studied in one dimension. Unlike the original Roe
flux, the new flux is completely stable which will provide as a candidate to combat multi-
dimensional shock instability, particularly the carbuncle phenomenon.

� 2009 Elsevier Inc. All rights reserved.
1. Entropy consistency

Systems of conservation laws that originate in physics frequently possess an additional conservation law for an auxiliary
quantity called entropy, which is conserved in smooth solutions but increases (or decreases according to the sign convention
adopted) if shock waves appear. Numerical methods for conservation laws can be expected to reveal this behavior in a gen-
eral way, but only for certain methods will the correspondence be precise. A method is said to be entropy-conservative if the
local changes of entropy are exactly the same as predicted by the entropy conservation law. It is said to be entropy-stable if it
produces more entropy than an entropy-conservative scheme.

In a previous paper [16], a new entropy-conservative scheme was proposed that is relatively inexpensive, and therefore a
good candidate to be the foundation for controlling entropy production. This scheme also has the property of exactly pre-
serving stationary contact discontinuities. An entropy-stable extension was also shown in [16], following [2]. The present
paper is focused on guaranteeing that the amount of entropy produced is also correct (entropy-consistent) and to investigate
the effects of entropy consistency on shock stability, which may be strongly connected to the carbuncle phenomenon [12].

1.1. Entropy conservation and entropy-stability

The physical conservation laws take the differential form in one dimension
@tuþ @xf ¼ 0 ð1aÞ
. All rights reserved.
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with the integral form
I
ðudx� f dtÞ ¼ 0 ð1bÞ
The additional conservation law has the differential form in one dimension
@tU þ @xF 6 0 ð2aÞ
with the integral form
I
ðU dx� F dtÞ 6 0 ð2bÞ
Equality prevails in regions of smooth flow. Inequality may hold if the flow contains discontinuities. The sign is a matter of
convention; for ideal gas dynamics these equations are correct if one takes U ¼ �qgðsÞ; F ¼ �qugðsÞ with
s ¼ ln p� c ln p
being the physical entropy. The sign convention is common in the mathematical and computational literature but creates
some linguistic tension. Where inequality holds we will speak of entropy production which seems natural from a physical
viewpoint, but we need to remember that U is being reduced.

The integral
_U ¼
Z Z

X
ð@tU þ @xFÞdxdt ¼

I
@X
ðU dx� F dtÞ ð3Þ
can be identified with the entropy production in a domain X with boundary @X. In all cases where entropy is produced, the
physical mechanism responsible is on that is not represented in (1b). Typically it is a dissipative or dispersive process, rep-
resented mathematically by higher-order derivatives multiplied by some small parameter.

In a discrete version of the governing equations, it is usually accepted that the conservation laws (1b) must be observed,
and some motivation to try and enforce equality in (2b) also, in smooth regions. The question then is how to enforce inequal-
ity in (2b) at discontinuities, not only with the proper sign (entropy-stable), but in the right amount. We now make some
observations concerning the significance of the amount.

1.2. Entropy production and shock resolution

Consider a steady, one dimensional, discrete representation of a shockwave. Assume that this has been produced by some
stable, consistent, conservative numerical method, with boundary conditions at inflow and at the outflow derived from the
Rankine–Hugoniot jump conditions. Whether or not the scheme makes explicit reference to entropy, there will be some en-
tropy flux _mSi at the inflow (where _m is the mass flow rate) and some entropy flux _mSo at outflow. The nature of the scheme
guarantees that these are correct, because they can be derived from conserved variables, which are certainly correct.

The difference of the two entropy fluxes is accounted for by entropy production within the domain. It follows that entropy
production within the domain is correct under the stated assumptions, once a steady state has been reached. Of course, if no
entropy is produced, the scheme could not be stable.

However, entropy production during the transient phase of the calculation affects the quality of the shockwave that is
eventually produced. This statement will now be illustrated in the case of a scalar conservation law,
@tuþ @xf ¼ @tuþ f 0ðuÞ@xu ¼ 0 ð4Þ
for which we choose an entropy function UðuÞ ¼ u2. To conform to the physicists view that entropy is naturally increasing
with time, and brings disorder, we might define the ‘‘physical entropy” as SðuÞ ¼ �u2.

Consider a discrete shock representation uðxjÞ ¼ un
j ðj ¼ 1:::JÞ, that has not yet reached equilibrium, and suppose that dur-

ing one time step, as it advances toward equilibrium, the solution changes to uðxjÞ ¼ unþ1
j . Because of conservation, the mean

value �u will not be changed. The ‘‘physical entropy” contained in the domain is (after dropping the superscripts)
X
¼ �

X
j

ðujÞ2 ð5Þ

¼ �
X

j

ðuj � �uþ �uÞ2 ð6Þ

¼ �
X

j

ðuj � �uÞ2 � 2�u
X

j

ðuj � �uÞ � J�u2 ð7Þ

¼ �
X

j

ðuj � �uÞ2 � J�u2 ð8Þ
It is clear that any change that moves uj closer to �u increases the entropy, and also smears the shockwave. Conversely, mov-
ing uj away from �u reduces the entropy, but if uj is moved too far away from �u, then overshoots are created.
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It becomes apparent that entropy enters into shock quality in two-ways. First, the rise of entropy across the shock must be
correct. However, this is rather easy, merely requiring conservation and stability. But secondly, the entropy contained within
the shock should be neither too great nor too small, otherwise the shock will respectively be smeared out, or oscillatory. The
‘‘correctness” of this quantity in the steady state depends on its generation during the transient phase.

However, it does not seem easy to make a direct analytical connection between entropy production and shock quality,
and so much of the present paper rests on numerical experiment. However, all we seek is a ‘‘reasonable” shock profile, since
it seems quite hard to define an optimal one.

2. Entropy production in scalar problems

2.0.1. Analytical behavior

We continue the discussion of the scalar conservation law (4) with its entropy function U ¼ �u2 and introduce also the
entropy variable vðuÞ ¼ dU=du ¼ �2u, so that
@tU þ f 0ðuÞ@xU ¼ @tU þ @xF ¼ 0 ð9Þ
where
F ¼
Z u

u0

vðuÞ df
du

du
It is well known that the ‘‘conservation law” (9) breaks down as soon as discontinuities develop. For example, if we draw a
control volume around a small section of a shock, we can find the rate of entropy production within that volume by
integrating
I

@XðU dx� F dtÞ ð10Þ
which turns out to be of the order of the cube of the shock strength [8].

2.0.2. Discrete behavior

Entropy conservation. Following [16], consider two neighboring discrete states ðuL;RÞwith dual cell area ðhL;RÞ, discretized
semi-discretely as
hL@tuL ¼ fL � f �

hR@tuR ¼ f � � fR
ð11Þ
and has two kind of interpretations. One, the left and right states are point values at vertices that surround a linear element
centered at �. This is a residual distribution scheme where the residual ðfL � fRÞ is split as ðfL � f �Þ þ ðf � � fRÞ and distributed
to the left and right states respectively. The other is finite volume interpretation where the left and right states are cell-aver-
aged values separated by a flux interface �. An entropy update will be
hL@tUL ¼ vLðfL � f �Þ
hR@tUR ¼ vRðf � � fRÞ

ð12Þ
with the total element update computed as the sum of the two nodes given by
@tðhLUL þ hRURÞ ¼ �½vf � þ ½v �f � ð13Þ
where ½�� ¼ ð�ÞR � ð�ÞL. Define an entropy production _U associated with flux f � be the difference of the entropy produced by
that flux and the entropy produced by the discrete entropy conserving equation (Eq. (3)). In a finite volume scheme with
numerical flux f �ðuL;uRÞ, the entropy production at each interface is
_U ¼ f �ðuL; uRÞðvR � vLÞ � ðvRfR � vLfLÞ þ ðFR � FLÞ ð14Þ
and choosing f � to make this expression vanish will result in an entropy-conservative scheme.
If instead, we choose the arithmetic mean flux f � ¼ 1

2 ðfL þ fRÞ, then we obtain
_U ¼ ðFR � FLÞ �
1
2
ðvR þ vLÞðfR � fLÞ ð15Þ

¼
Z 1

0
ðv � �vÞ df

du
½u�dn ð16Þ

¼ ½u�
Z 1

0
ðn� 1

2
Þ½v � df

du
dn ð17Þ

¼ O½u�3 ð18Þ
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In smooth regions this production is below the truncation error of the central difference scheme, but in non-smooth regions
it is large and of unpredictable sign. We therefore replace the arithmetic mean flux by an entropy-conservative flux1. For
Burgers’ equation with f ¼ 1

2 u2, this is
1 We
f �c ¼
1
6
ðu2

L þ uLuR þ u2
RÞ ð19Þ
Note that this is a symmetric function of the left and right states, and hence involves no upwinding.
Upwinding. To give stability to the discretization, one adds an upwind term so that the flux reads
f � ¼ f �c �
1
2
j�aj½u� ð20Þ
or, better from a theoretical point of view for extension to systems,
f � ¼ f �c �
1
2
j�aj du

dv ½v� ð21Þ
so that
_U ¼ �1
2
j�aj du

dv ½v �
2 ð22Þ
and the entropy due to upwinding has the proper sign. Note that �a ¼ aLþaR
2 is the averaged velocity at the interface �. For Bur-

gers’ equation, the extra term is
F�U ¼ �
1
2
juL þ uRjðuR � uLÞ
leading to the entropy-stable flux
f �S ¼
1
6

u2
L þ uLuR þ u2

R

� �
� 1

4
juL þ uRjðuR � uLÞ ð23Þ
Production. The entropy due to upwinding is not, however, large enough. It was noted above that the entropy produced
by shock waves is of the order of the cube of the shock strength. This suggests that the numerical flux should also contain a
term proportional to the square of the disturbance, because this would contribute a term of the order ½u�3 to _U. The arith-
metic mean flux does add a term of the proper order of magnitude at shocks, but subtracts it at rarefactions. Our expectation
was that a third-order term should only be added if a shock has been detected.

In fact, our numerical experiments did not quite bear this out. We ended up by adding a term proportional to j½u�j½u� to the
flux, and hence a term proportional to j½u�j½u�2 (and so of the correct sign) to _U, in all circumstances. For weak disturbances,
including well-resolved rarefaction waves, the extra effect is small. For shocks, the extra dissipation removes oscillations,
and for under-resolved rarefactions, it provides a smoothing that was found empirically to improve results.

The final form of our recommendation is
f � ¼ f �c �
1
2
j�aj þ aj½a�jð Þ du

dv ½v � ð24Þ
Making the third term proportional to the jump in wavespeed gives the correct order of magnitude for nonlinear flux func-
tions, but gives no contribution for linear flux functions. At this stage, a is a parameter to be determined, and this is the topic
of the next section.

3. A theoretical attempt at consistency

Entropy consistency, in this sense of ‘just enough’, seems to be difficult to analyze. This is because we can expect that
shocks will be captured over several cells, and the total entropy required will have to be generated at more than one inter-
face. Unlike entropy conservation, the problem will no longer be local. Some analysis can be done by assuming that it is local,
but this may not be completely satisfactory. It is given below for the simple case of Burgers equation.

3.1. Scalar equations

Consider a rectangular control volume in the x; t plane whose dimensions are Dx;Dt (see Fig. 1). Let this control volume be
traversed by a shock, possibly of finite thickness, moving with speed k, with uniform states on either side of it. Compute
I ¼
I
ðU dx� F dtÞ ð25Þ
intend, of course, to reintroduce a suitable production term later on.
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Fig. 1. Control volume to establish source term in entropy conservation law.
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Fig. 2. Control volume to establish entropy production at an interface.
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Regions 1, 3 and 5 do not contribute to I. The contribution from regions 2 and 4 are easily found; we have
2 In o
I ¼ kDt½U� � ½F�Dt ð26Þ
Next evaluate I for the control volume shown in Fig. 2 drawn around a typical cell interface. Then
I ¼ ½vf � � ½v �f � � ½F�ð ÞDt ð27Þ
Equating the two expressions for I (asking this interface to produce all of the entropy for the shock ) gives
½v �f � ¼ ½vf � � k½U� ð28Þ
The difference between this equation and the one derived from entropy conservation (2b) is the appearance on the right of
k½U� rather than ½F�.

This indicates that we should add to the flux a production term f �p satisfying
½v �f �p ¼ ½F� � k½U� ð29Þ
For Burgers equation, with the choice of entropy variable adopted in Section 2.0.1, this additional flux is 1
12 ½u�

2; it amounts to
taking a ¼ 1

6 in (24). For fluxes between very different states it will be significant, and should be added to the entropy-stable
flux if shocks are detected. The resulting flux turns out to be [5]
f � ¼ 1
4
ðu2

L þ u2
RÞ �

1
2
juL þ uRj

2
ðuR � uLÞ ð30Þ
This is simply the arithmetic mean flux with a standard upwind flux2. However, as mentioned in Section 2.0.2, we add
the production term for all circumstances (includes both compression and expansion cases) to obtain the entropy-consistent
flux;
f � ¼ 1
6
ðu2

L þ uLuR þ u2
RÞ �

1
4
juL þ uRjðuR � uLÞ �

juR � uLjðuR � uLÞ
12

ð31Þ
The first term is entropy conserving. The second (upwind) term enforces entropy-stability, and the third term yields en-
tropy production of Oð½u�3Þ. Recall that the exact Riemann solver for the Burgers equation is
f � ¼

0 if uL < 0 < uR

u2
L

2 else if uL þ uR P 0
u2

R
2 else uL þ uR < 0

8>><>>: ð32Þ
ther words Roe’s approximate Riemann solver with no ‘‘entropy fix”.
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To make a graphical comparison between the various flux formulae, we may nondimensionalize them with respect to the
arithmetic mean flux as
F� ¼ 4f �

ðu2
L þ u2

RÞ
ð33Þ
To display this, Fig. 3 plots F�ðsin h; cos hÞ versus the parameter h with �p 6 h 6 p.
For the Burgers equation, the only difference between the exact Riemann solver and the flux is in the two-way rarefaction

region (uL 6 0 6 uR). The former sees the interface flux always as zero in rarefactions, but the latter does not. Fig. 3(b) com-
pares two nonupwinded fluxes (arithmetic mean and entropy conserving). Fig. 3(c) displays the entropy consistent flux Eq.
(31), which is negative in the two-way rarefaction region. This is surprising at first, but it may be recalled that the dissipation
in the”exact” flux formula is in fact the minimum required to avoid rarefaction shocks. To give smooth rarefactions a greater
dissipation, a negative flux is needed [10,15]. The proposal made in [15] was simply f � ¼ 1

2 uLuR, which is also plotted.
In the next section, numerical experiments will be conducted to try and validate this analysis.

4. Experiments on Burgers equation

Only a small selection of the experiments that we carried out are reported here, and they are edited to tell a story. For
each experiment, we prescribed 40 cells with periodic boundary conditions. The Courant number is 0.8 and the solid lines
represent the exact solutions and are compared against the results of the new schemes (ES (entropy-stable or a ¼ 0:0) and EC
(entropy-consistent or a ¼ 1=6) fluxes). The computations are done using a first order spatial and temporal accurate method
unless stated otherwise.
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4.1. Test case I: modelling rarefaction with a stationary shock

The first test problem is an initial value problem [7] with data
uðx;0Þ ¼
�1 if 1

3 6 jxj 6 1
1 if jxj < 1

3

(
ð34Þ
and computed until t ¼ 0:32. This initial square wave will evolve into a rarefaction fan on the left while the right side will
remain a stationary shock. Note that this problem will contain a sonic point rarefaction. The exact solution to this problem is
given in [7]. For this example, in the rarefaction zone (uL < 0 < uR) where initially juLj ¼ juRj, the net change for Roe flux is
½f � ¼ 0, so we expect the unphysical rarefaction shock is unchanged. For the exact Riemann solver where

ui�1 ¼ �1:0;ui ¼ �1:0;uiþ1 ¼ 1:0, ½f � ¼ � u2
i�1
2 , so ui will increase by this amount (multiplied by �m) hence breaking up the rar-

efaction shock. For the ES solver, ½f � ¼ � u2
i�1
3 , again we expect ui to increase avoiding rarefaction shock. For the EC solver,

½f � ¼ � 2u2
i�1
3 which increases ui slightly more than the exact Riemann solver. The net flux change for ES/EC flux only differs

by a factor of 1
6 compared to the exact Riemann solver. Initially, the rarefaction regions produced by the ES/EC flux and exact

Riemann solver are slightly different but as time evolves, the rarefactions should be similar since their profiles become rel-
atively smooth. Of course, the Roe flux and the exact Riemann solver should preserve the stationary shock (x ¼ 1

3) and we
predict that the new flux (at least EC) to do the same.

Our numerical results confirmed that the new flux functions (ES and EC) do not see the rarefaction as a rarefaction shock
(Figs. 5–7) unlike the original Roe flux where its solution is identical to the initial condition (Roe flux solution is omitted for
brevity). This is one of the benefits of including a more precise control of entropy. In fact, the new flux functions produce
rarefactions that are comparable to the exact Riemann solver solution (Fig. 4) as predicted before.

Unfortunately, Fig. 5 clearly demonstrates spurious oscillations being produced near the shock by the ES flux, since there
is not enough entropy being generated across the shock. In other words, the solution is not monotone even for a first order
method. Adding the entropy consistency term removes these spurious oscillations (Fig. 6) and provides extra smoothing for
the under-resolved rarefaction. Using a second order TVD version (harmonic limiter) based on Hancock scheme adds further
improvement to the prediction of the rarefaction (Fig. 7).

4.2. Test case II: modelling compression waves

Consider the following initial value problem.
uðx;0Þ ¼
u0 if jxj > 1
u0 � u1 � sinpx if � 1 6 x 6 1

�
ð35Þ
where the amplitude u1 ¼ 0:5 has been chosen. The background velocity u0 is chosen to be 0:0 (although in [5], we also have
used u0 ¼ 1:0;5:0 and produced similar results.). This is an initial value problem which also consists of compression and
expansion waves. However, the normalized analytical solution will be in the form of
XCoord
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Fig. 4. Test 1 – Exact Riemann solver.
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Fig. 5. Test 1 – ES flux. Overshoots are due to not enough entropy being produced.
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Fig. 6. Test 1 – EC flux. With a proper entropy production we have a monotone solution.
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uðx; tÞ ¼ u0

u1
� sin px� u

u1
u1t

� �
ð36Þ
Figs. 8–11 indicate that for smooth data, the solutions are almost identical regardless if we add the 1
12 ½u�

2 term or not. This is
consistent with our theoretical prediction where entropy production for the EC flux is of Oð½u�3Þ as opposed to Oð½u�2Þ for the
ES flux. However, for data with high gradients (as in test case 1), the two fluxes produced results that are substantially dif-
ferent. This reinforces the importance of producing the correct amount of entropy.

5. Systems of Euler equations

5.1. The form of the flux

The Euler equations for an ideal gas in one dimension are
@tuþ @xf ¼ @tuþ A@xu ¼ 0 ð37Þ
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where
3 Thi
u ¼ ðq;qu;qEÞT ð38Þ
fðuÞðqu;qu2 þ p;quHÞT ð39Þ
The total energy is defined as E ¼ eþ u2

2 and the total enthalpy H ¼ Eþ p
q. The pressure is determined from the equation of

state, e ¼ pðc�1Þ
q where c is the ideal gas constant and A is the Jacobian matrix. Define the entropy function3 to be U ¼ � qs

c�1
where s ¼ ln p� c ln q is the physical entropy, we compute the entropy variables as
v ¼ @U
@u
¼ c� s

c� 1
� 1

2
q
p
ðu2Þ;qu

p
;�q

p

� �T

ð40Þ
s is the only choice of entropy function that generates entropy variables v that can be extended to the Navier–Stokes equations [4].



XCoord

u

-2 -1 0 1 2
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Exact
Fix
No-fix

Fig. 9. Test 2 – Solution at t = 0.32. Both fluxes demonstrate almost identical results for smooth data.
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Fig. 10. Test 2 – Solution at t = 0.96. As compression waves begins to steepen up, the fluxes starts to slowly differ from each other at the compression region.
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An entropy-stable flux [2,16] for the Euler equations is
f� ¼ fc �
1
2

R̂D̂R̂T ½v� ð41Þ
where fc is the entropy-conservative flux [16] (included in Appendix A) and R̂ contains the averaged right eigenvectors of A
R̂ ¼
1 1 1

û� â û ûþ â

Ĥ � ûâ 1
2 û2 Ĥ þ ûâ

264
375 ð42Þ
and D̂ is a positive dissipation matrix that is written as
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Fig. 11. Test 2 – Solution at t = 1.44. As the shock develops, it is clear that only the EC flux is monotone.
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D̂ ¼ K̂Ŝ ð43Þ
where K̂ is the matrix of absolute eigenvalues
K̂ ¼ diagðjû� âj; jûj; jûþ âjÞ ð44Þ
and Ŝ is a matrix that produces the correct scaling
Ŝ ¼ diag
q̂
2c
;
ðc� 1Þq̂

c
;
q̂
2c

� �
ð45Þ
such that R�1du ¼ SRT dv. The averaged (̂�) values for the asymmetric flux (R̂D̂R̂T ½v�) are determined exactly as the averaged
values for fc [5]. These averaged quantities, particularly for density and speed of sound ensure that stationary contact dis-
continuities are preserved [16] while for other variables are for the sake of computational economy.

If we form the integral (25) for a system of conservation laws, the control volume may be crossed by several k waves. If
these waves do not intersect, then we will have
I ¼ Dt
X

k

kk½U�k � ½F�
 !

¼ Dt
X

k

kk½U�k � ½F�k
� �

ð46Þ
We will assume that the same formula is true if they do intersect. Contact and rarefactions waves do not contribute to (46),
so the summation is simply over any shockwaves that may be present. If we introduce a flux component fp to cater for pro-
duction, then we easily find that
½v�T fp ¼
X

shocks

ð½F� � k½U�Þ ð47Þ
and we now turn to evaluating the quantity ð½F� � k½U�Þ for a single shock.
In manipulating this expression, we will use results from Roe-linearization [14], since these are exact whenever the only

wave present is a shock. We employ the Roe-averaging ~q defined by
~q ¼
ffiffiffiffiffiqL
p

qL þ
ffiffiffiffiffiffiqR
p

qRffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p ð48Þ
and the complementary averaging
~~q ¼
ffiffiffiffiffiqL
p

qR þ
ffiffiffiffiffiffiqR
p

qLffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p ð49Þ
noting the identity
½ab� ¼ ~a½b� þ ~~b½a� ð50Þ
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We have, across an isolated shock,
½F� � k½U� ¼ ½uU� � ð~u� ~aÞ½U� ¼ ~u½U� þ ~~U½u� � ~u½U� � ~a½U� ¼ ~~U½u� � ~a½U�
where the upper (lower) sign relates to right (left)- going waves.
Recall that U ¼ �qS=ðc� 1Þ [16], we easily find that
~~U ¼ �1
c� 1

~~q~S; ½U� ¼ �1
c� 1

ð~~q½S� þ ~S½q�Þ
where ~~q ¼ ffiffiffiffiffiffiffiffiffiffiffiqLqR
p

so that
½F� � k½U� ¼ �1
c� 1

~~q~S½u� � ~að~~q½S� þ ~S½q�Þ
� 	
Now, the acoustic eigenvector in the Roe-averaging is ½1; ~u� ~a; ~H � ~u~a�T and hence
½qu� ¼ ~~q½u� þ ~u½q� ¼ ð~u� ~aÞ½q� ) ~~q½u� ¼ �~a½q�
thus we finally have,
½F� � k½U� ¼ �
~~q~a

c� 1
½S�
which is an exact result.
From now on, however, we make weak shock assumptions. A combination of standard results [1] yields
½S� � c2 � 1
12c

½q�
q

� �3

ð51Þ
so that
½F� � k½U� � cþ 1
12c

qa
½q�
q

� �3

ð52Þ
Let us compare this with the entropy produced by the proposed flux, again for an isolated shock (of either family). The for-
mula to be evaluated is
_U ¼ a
2
½v�T Rj½KS�jRT ½v� ð53Þ

¼ a
2

2½q�
q

� �2 q
2c

� �
cþ 1

2
a
½q�
q

� �
ð54Þ

¼ a
2

cþ 1
c

qa
½q�
q

� �3

ð55Þ
and this matches the required result if a ¼ 1
6, exactly as for Burgers equation.

Therefore, we propose an entropy-consistent flux function using Eq. (41) with the following dissipative matrix
D̂EC1 ¼ K̂þ 1
6
j½Ku�a�j

� �
Ŝ ð56Þ
where ½Ku�a� ¼ diagð½u� a�;0; ½uþ a�Þ adding extra dissipation only to the acoustic waves and hence entropy produced at
Oð½��3Þ. This will be referred to as EC1 flux in this paper.

6. Experiments on the Euler equations

6.1. Test case III: modelling a stationary shock

This is a one dimensional problem [3] with an interface separated by a left and right states with M0 being the upstream
Mach number and c ¼ 1:4. The normalized upstream (state 0) and downstream (state 1) conditions are given by the Ran-
kine–Hugoniot conditions
U0 ¼ 1 1 1
cðc�1ÞM2

0
þ 1

2

h i
U1 ¼ f ðM0Þ 1 gðM0Þ

cðc�1ÞM2
0
þ 1

2f ðM0Þ

h i ð57Þ
where f ðM0Þ and gðM0Þ are the jump conditions of density and pressure across the shock given by
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f ðM0Þ ¼
2

ðcþ 1ÞM2
0

þ c� 1
cþ 1

 !�1

gðM0Þ ¼
2cM2

0

ðcþ 1Þ �
c� 1
cþ 1

ð58Þ
m ¼ 0:2 is selected to avoid possible numerical instability issues associated with semi-discrete flux functions, although the
new flux function seems to be stable for higher Courant numbers as proven in the unsteady case in Section 6.4. There are
25 computational cells and the initial supersonic conditions are applied at the inlet boundaries. At the subsonic outlet, zero
gradients are prescribed for the fluxes except for the mass flux, where it is fixed to be unity. The reason for doing this is dis-
cussed when shock instability is investigated (Section 6.5).
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Fig. 12. Test 3 – ES flux with M0 ¼ 1:5 with spurious over/undershoots near the shock.
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Fig. 13. Test 3 – EC1 flux with M0 ¼ 1:5. No over/undershoots.
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The entropy-stable (ES) flux (a ¼ 0:0) which has entropy produced only from the upwinding term does not show mono-
tone shock profiles unlike (for most cases) the entropy-consistent (EC1) flux (Figs. 12–16). In addition, both ES and EC1 flux
functions introduce multiple intermediate states (or cells) within the shock hence slightly smearing its profile. For the EC1
flux, the amount of smearing is directly proportional to the magnitude of a. Reducing the current a ¼ 1=6 steepens the shock
but with the risk of generating spurious overshoots. On the other hand, selecting a > 1=6 increases the amount of entropy
production (dissipation) at the shock.

Unfortunately for high M0, the density profiles predicted by the EC1 flux show undershoots (refer to Fig. 17), which can be
explained by the following. Our analysis is based on a local entropy production across shocks, captured by only one interface
without intermediate cells. This assumption is perhaps reasonable for solving the Burgers equation but may not be accurate
for solving the Euler equations since the shocks are captured over multiple intermediate cells with the number of interme-
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Fig. 14. Test 3 – ES flux with M0 ¼ 4:0. Not a monotone solution.
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Fig. 15. Test 3 – EC1 flux with M0 ¼ 4:0. Monotone shock solution.
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diate cells increases with increasing M0. For example, assume entropy is produced at ac½q�3 (c is a constant coefficient) for a
particular shock with no intermediate cell. If one intermediate cell is introduced halfway within the shock, the total entropy
production would still be the same but divided over two interfaces each with 4ac½q=2�3. If we have more intermediate cells,
we expect a ¼ 1=6 to be multiplied with a larger value. Based on numerical experiments, the entropy-consistent flux pro-
duces shocks with three to four intermediate cells, hence a must be a value between 1.5 and 2.6 to ensure enough entropy
production.

Our numerical experiments indicate that the difference of the intermediate states is generally much larger (hence the
term Oð½q�3Þ is even larger) in the supersonic region of the shock compared to the subsonic region. As such, it may cause
the solution to blow-up in the supersonic region if a > 1:0 is used since numerical diffusion becomes overwhelmingly dom-
inant restricting the time-step stability. To overcome this shortcoming and produce ‘enough’ entropy in both the supersonic
and subsonic regions in the shock, the following dissipative matrix is proposed:
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Fig. 17. Test 3 – EC1 flux plot of density at M0 ¼ 20:0.
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D̂EC2 ¼ ðK̂EC2 þ aEC2j½Ku�a�jÞŜ ð59Þ
adding a small dissipation to the acoustic waves of the upwinding term, producing additional entropy of Oð½��2Þ with
K̂EC2 ¼ diagðð1þ bÞjû� âj; jûj; ð1þ bÞjûþ âjÞ ð60Þ
where b ¼ 1=6 empirically determined to ensure the density is non-oscillatory without excessively smearing the shock pro-
file. In addition, entropy is also produced at Oð½��3Þ but with
aEC2 ¼ ðamax � aminÞðmaxð0; signðdMmax � ½M�ÞÞÞ þ amin ð61Þ
where amin ¼ 1=6 and amax ¼ 2:0 (an approximate average value between 1.5 and 2.6). ½M� is the change of Mach number at
the flux interface. Finally dMmax ¼ 0:5 is empirically determined so that only the subsonic region of the shock is multiplied
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Fig. 18. Test 3 – EC2 flux with M0 ¼ 1:5.

XCoord

M
ac
h

-0.25 0 0.25 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 19. Test 3 – EC2 flux with M0 ¼ 4:0.
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with amax and overall produce a shock quality comparable to EC1 flux. This new dissipative matrix D̂EC2 used in Eq. (41) will
be referred to as EC2 flux in this paper.

The results of EC2 flux are shown in Figs. 18–22 indicating that there are no more under/overshoots for the density profile
for M0 ¼ 20:0 (Fig. 21) but in terms of Mach number, EC2 results are similar to the results of EC1.

It may seem that the EC1 (or EC2) flux is not conservative since the shock corresponding with the Mach number has
moved upstream (Fig. 16). However, there is an explanation for this occurrence. Conservation only applies to the mass
(Fig. 21), momentum and energy but the velocity is not conserved. As a result, the Mach number is also not conserved, result-
ing a shift of its shock profile, with larger shifts for larger M0.

Results using a second order high resolution method using Hancock scheme for EC2 fluxes (Figs. 22 and 23) are also in-
cluded to show the captured shocks are ‘tighter’ compared to a first order method. Of course the Roe flux captures the sta-
tionary shocks exactly and the results are omitted for brevity.
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Fig. 20. Test 3 – EC2 flux with M0 ¼ 20:0.
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Fig. 21. Test 3 – EC2 flux plot of density at M0 ¼ 20:0.
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Fig. 22. Test 3 – EC2 (second order with Minmod) with M0 ¼ 20:0.
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Fig. 23. Test 3 – EC2 (second order with Minmod) plot of density at M0 ¼ 20:0.
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6.2. Test case IV: modelling a stationary contact

The following initial value problem is prescribed with zero slopes on the inflow and outflow where.
qL ¼ 10; qR ¼ 1; uL ¼ uR ¼ 0; pL ¼ pR ¼ 1 ð62Þ
The new methods (ES, EC1 and EC2 fluxes) exactly preserve the contact discontinuity (Fig. 24). This also implies that the new
flux function can predict boundary layers with minimal diffusion much like the Roe flux.

6.3. Test case V: modelling a rarefaction shock

This test is identical to modelling of the stationary shock except that it is just the reversed initial values of the Rankine–
Hugoniot jump conditions. We have prescribed zero slopes at both the inlet and outlet boundaries.
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Fig. 24. Test 4 – Solution of Roe, ES and EC1 (and EC2) fluxes where contact is preserved exactly.
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As shown in Figs. 26 and 27, the both of the new schemes predicts the rarefaction fan unlike the original Roe flux (Fig. 25).
This is one of the positive outcome of including a more precise control of entropy. As expected, the EC2 (similar results for
EC1) flux produces slightly smoother profile due to the extra dissipation. In addition, using a second order method produces
an even more accurate prediction of the expansion region [5].

6.4. Modelling Sod’s shock tube problem

Up until this point, the EC flux function has only been tested for steady Euler problems. Now, we intend to demonstrate its
ability to predict the unsteady Euler equations. We refer to Sod’s problem where
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pL ¼ 105; qL ¼ 1:0; uL ¼ 0:0 ð63Þ
pR ¼ 104; qR ¼ 0:125; uR ¼ 0:0 ð64Þ
utilizing 100 computational cells with m ¼ 0:8. Results are shown at t ¼ 0:0061.
The EC2 flux produces very similar results compared to those produced by the Roe flux (Figs. 28–31). For first order meth-

ods, results of the moving contact discontinuity are almost equivalent between the two flux functions, each capturing with
about eight intermediate cells. However, EC2 flux captures the moving shock with five intermediate cells as opposed to four
cells captured by the first order Roe flux. Second order solutions (using Hancock scheme with Superbee limiter) of both
fluxes are almost identical, capturing the contact discontinuity with only four intermediate cells and the shock with only
two intermediate cells.
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Fig. 26. Test 5 – ES flux correctly predicts the rarefaction fan.
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Fig. 27. Test 5 – EC2 flux adds some smoothing to the rarefaction fan.
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6.5. Investigation of 1D shock instability

So far, we have shown that the EC2 flux captures shocks of any strength with reasonable success, in the sense that steady
and unsteady shocks are captured with only a few intermediate cells. In this section, we intend to investigate if entropy con-
sistency is enough to completely remove shock instability.

Shock instability which relates to the carbuncle phenomenon occurs when a blunt body is subjected to a strong shock,
where the captured shock produces spurious solutions usually in the form of two counter rotating vortices near the stagna-
tion region [11]. It is strongly suspected that instability arises from either round-off errors due to the grids or from the grids
forcing the intermediate point(s) of a shock to be in a certain incompatible location. To mimic this in one dimension, Test III
(Section 6.1) is used except that intermediate values are introduced within the shock satisfying
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Fig. 28. Density plot of Sod’s problem for Roe flux.
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Fig. 29. Results of EC2 flux.
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U ¼ dU0 þ ð1� dÞU1 ð65Þ
where d ¼ 0:0;0:1;0:2; . . . ;1:0.
Note that the shock instability of a real blunt body problem has a certain stand-off shock position. To be consistent with

this, the 1D shock location is not allowed to shift. Recall that for Test III, the outlet boundary conditions are based on a fixed
mass flux with other fluxes being zero gradient. As a result, the total mass within the system is conserved hence restricting
the shock (based on conservative variables) from shifting. However, the intermediate point(s) within the shock is(are) free to
relocate, generating acoustic and entropy waves that are broadcasted downstream to the exit. Due to the nature of the exit,
these waves are reflected back to the shock and force its intermediate points to relocate once more resulting a limit cycle
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Fig. 30. Second order (superbee) limited Roe flux. The contact is now captured with only four intermediate cells.
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Fig. 31. Second order (superbee) limited EC2 flux. Almost identical to the second order Roe flux.
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Fig. 32. 1D shock instability predicted by the original Roe flux at t = 0 and t = 340.
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Fig. 33. The shock profile at t = 200 and t = 680, demonstrating a limit cycle.
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(Figs. 32 and 33). The shock instability usually occurs when using numerical flux functions that are minimally dissipative
such as the original Roe flux. The residual of the Roe flux is plotted in Fig. 36, showing the solution does not converge even
after 100,000 time-steps (t ¼ 20;000).

Our results indicate that the EC1 flux (which is not completely entropy-consistent) does not provide a complete range of
1D shock stability (Fig. 34), but has a smaller instability spectrum compared to the original Roe flux (Fig. 35). Kitamura et al.
[6] used a ¼ 0:8 to achieve full shock stability in 1D, but pointed out that this selection of a causes the numerical solution to
‘blow-up’ in higher dimension. This behavior is similar to our numerical experiments in one dimension, where there is a limit
to which a can be increased before the solution ‘blows-up’. However, our numerical results indicate that EC2 flux solution
does not ‘blow-up’ in higher-dimensions and more importantly the shock is completely stable for all d in one dimension.
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Fig. 34. 1D shock stability spectrum for the EC flux.
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Fig. 35. 1D shock stability spectrum for the original Roe flux.
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7. Concluding remarks

We have introduced into the numerical treatment of the conservation laws what may appear to be artificial terms in order
to control the quality of captured discontinuities. Why should such terms be necessary?

It has been shown by Tadmor and Zhong [17] that stationary shocks can be captured by solving the Navier–Stokes equa-
tions with an entropy conserving Euler flux and central differences for the dissipation. However, to do this, they required an
extremely fine grid. Without the dissipative terms, the solution was extremely oscillatory, as were the solutions with dissi-
pation on coarse grids. In fact, the oscillations built up until they were strong enough to excite a commensurate response
from the dissipation. On finer grids, the oscillations did not have to be so strong to do this, and eventually (on grids finer
than any actually employed) the oscillations would disappear, because the true shock structure of the Navier–Stokes equa-
tions would be revealed.
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That would require, of course, that the grid be finer than the shock thickness, and probably less than the mean free path
(Oð10�6Þm). For many calculations, the shock structure is of no interest, and a far coarser resolution is adequate. The terms
that are added into the Euler equations here to yield entropy production can be thought of as subgrid terms that compensate
for the lack of resolution.

If these subgrid terms are to be retained in a very fine grid shock calculation, they will decrease in importance as the grid
is refined. They produce entropy proportional to the square and cube of the difference in states, which is larger for an under-
resolved shock, but small for a resolved shock. On the contrary, the physical dissipation terms produce entropy proportional
to only the square of the difference in states, although multiplied by very small coefficients.

Results of the entropy-consistent flux (EC2) imply that one dimensional entropy consistency provides complete shock
stability in one dimension. However it is still unclear at this stage whether one dimensional entropy consistency will guar-
antee shock stability in higher-dimensions. Perhaps the concept of one dimensional entropy consistency must be coupled
with some form multidimensional dissipation mechanism as proposed by Nishikawa and Kitamura [9], Roe and Kitamura
[13] to achieve full 2D and 3D shock stability. This will be left as an avenue for future work. Overall, we hope that the prin-
ciples of entropy consistency in this paper will serve to better understand from a physical basis on how to completely re-
move shock instability and eventually the carbuncle phenomenon.
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Appendix A. Entropy conserving flux

The entropy conserving flux [16] satisfies
steady shock.
vTfC ¼ ½qu� ð66Þ
and is explicitly computed as averaged quantities of
fCðuL;uRÞ ¼
q̂û

q̂û2 þ p̂1

q̂ûĤ

264
375 ð67Þ
We now determine these averaged states. Define
z1 ¼
ffiffiffiffi
q
p

r
; z2 ¼

ffiffiffiffi
q
p

r
u; z3 ¼

ffiffiffiffiffiffi
qp
p ð68Þ
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so that the averaged quantities are computed as functions of arithmetic mean �a ¼ aLþaR
2

� �
and logarithmic mean (defined in

Appendix B). Choose û ¼ �z2
�z1

and insert into Eq. (66) to obtain
q̂ ¼ �z1zln
3 ð69Þ

p̂1 ¼
�z3

�z1
ð70Þ

p̂2 ¼
cþ 1

2c
zln

3

zln
1

þ c� 1
2c

�z3

�z1
ð71Þ

â ¼ cp̂2

q̂

� �1
2

ð72Þ

bH ¼ â2

c� 1
þ û2

2
ð73Þ
Appendix B. Logarithmic mean

Let a be some quantity of interest which has a left and right state. The logarithmic mean of a is defined as
alnðL;RÞ ¼ aL � aR

lnðaLÞ � lnðaRÞ
ð74Þ
However, this is not numerically well-posed when ðaLÞ ! ðaRÞ. To overcome this, let us write the logarithmic mean in an-
other form. Let f ¼ aL

aR
, so that
alnðL;RÞ ¼ aL þ aR

ln f
f� 1
fþ 1

where lnðfÞ ¼ 2
1� f
1þ f

þ 1
3
ð1� fÞ3

ð1þ fÞ3
þ 1

5
ð1� fÞ5

ð1þ fÞ5
þ 1

7
ð1� fÞ7

ð1þ fÞ7
þ Oðf9Þ

 ! ð75Þ
to obtain a numerically well-formed logarithmic mean. The subroutine for computing the logarithmic mean is the following.
Let
f ¼ aL

aR
; f ¼ ðf� 1Þ

ðfþ 1Þ ; u ¼ f � f
1. if ðu < �Þ
F ¼ 1:0þ u=3:0þ u � u=5:0þ u � u � u=7:0
2. else
F ¼ lnðfÞ=2:0=ðf Þ
so that alnðL;RÞ ¼ aLþaR
2F with � ¼ 10�2.
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